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Abstract– This paper presents the implemtation of a predictive func-
tional controller for the sendzimir 20-high cold rolling mill. The complete
mill model is presented and contains two parts, the static part modelled
by a gain matrix, and the dynamic part which represented by a third
order transfer function with a pure time delay. The PFC controller for-
mulation is derived using an embedded model in an ARIMAX form, this
is done in order to take account of the pure time delay between measure-
ment and actuation. The PFC control algorithm need less calculation
time and has a set control parameters which can be easily tuned. Simu-
lation studies are carried out by a comparison with benchmark PID con-
troller. Results shows that the PFC approach provides a better control
performances, quicker setpoint reaching and disturbances (shape fluctu-
ations) overcoming.

Keywords– Sendzimir steel mills, Predictive functional control, Shape
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I. I NTRODUCTION

Model predictive control (MPC) refers to a wide family of control
algorithms that employ an embedded model to predict the future be-
havior of the process over an extended prediction horizon. These al-
gorithms are formulated as a performance objective function, which
is defined as a combination of setpoint tracking performance and con-
trol effort. The first controller output move is implemented, and then
the entire procedure is repeated at the next sampling instance. The
goal behind the emergence of using MPC, and PFC in particular, is
to reduce occurring variance in the Controlled Variable (CV), This
may allow lowering of the control setpoint target or improving dis-
turbance rejection, therefore reducing cost and improving energy sav-
ings. MPC was found to be very effective in tackling such control
problems, due to the ability of prediction, given by the embedded
model, as well as effective constraint handling[6]. MPC was suc-
cessfully used in shape control problems especially in the paper do-
main [9]. However, MPC has so far and at the best knowledge of
the future never been implemented for a Sendzimir steel mill. The
paper present an application of a class of model predictive control
represented here by PFC. In sections II. and III., a comprehensive
description and a mathematical model of the Sendzimir steel mill is
presented. Section IV. details the steps taken to derive a high order
PFC formulation, as well as a broad overview on PFC tuning. Section
V. details the design and results of a higher order PFC for the shape
control of the model given in section III. and implemented following
the control law obtained in section IV.. In section VI., a benchmark
PID is designed and control performances are assessed. Finally Sec-
tion VII., conclude with a comprehensive comparison between PFC
and PID control performances in terms of Mean Square Error (MSE),
response time and overshooting.

II. SENDZIMIR MILL DESCRIPTION

The Sendzimir mill is a reversing mill, and a separate schedule con-
taining a number of passes is specified for each different material
rolled. One pass schedule can contain from 4 to 15 passes through
the rolling cluster. Each pass involves different entry and exit gauges,
with minor changes in the material hardness from pass to pass. The
mill under consideration is the 20-high mill, with the rolls arranged
in a 1-2-3-4 configuration, above and below the strip (see Fig. 1).
This configuration is used for rolling hard materials such as stain-
less steel, the large stack providing support and preventing unwanted
bending under the high loads involved. Hydraulic motors are used
to drive the cluster via the second intermediate rolls. The first inter-
mediate rolls (FIRs) are tapered in opposite directions, their lateral
movement affording one means of shape control. The other method
of shape control is via the segmented back-up rolls at the top of the
mill. Movement of the As-U-Roll (AUR) racks in or out of the mill
cause rotation of eccentrics on the top mill back-up roll shafts which
create bending of the back-up roll, this bending permeates through
the cluster and is attenuated due to the stack rigidity, the stack behav-

ing like a low-pass filter, in spatial terms. Due to the closer proximity
of the FIRs to the strip, their influence as a shape control device is
considerable. Both sets of shape actuators are driven by hydraulic
motors, which operate at a single speed only. The high-order bend-
ing, which is achievable in the Sendzimir mill , allows correction of
high-order shape defects such as herringbone and quarterbuckle.

Fig. 1. The Sendzimir cold rolling mill

The difficulty of shape control, being a truly multivariable control
problem, is manifested by the fact that shape, in the vast majority of
multi-roll mills, was and in most cases still controlled using manual
control actions [7]. Although there are a variety of mechanisms for
controlling strip shape, the unique method employed in the Sendzimir
mill is eccentric position control, which gives considerable variety in
the types of roll bending which can be achieved. Such variety and
shape control potential results in a challenging control problem.

III. M ODEL OF THE MILL

The mill model is represented by two parts.
• The static model which represents the rolling cluster.

• Dynamic model deals the effects of hydraulic actuators, strip dy-
namics and the shapemeter.

A. Static model

Since the rolling cluster is under a high compressive load (approx.
5000 tonnes), changes in shape actuator positions are transmitted im-
mediately to the roll gap. Therefore, the relationship between the
shape actuator positions and the roll-gap shape profile is represented
by a matrix of constant gains (the mill matrix) as:

Gm = [Ga Gi ] ∈R8×10

And:

yg = Gm ·
[
ua
ui

]
∈R8

Represents the shape profile at the roll gap, whereua ∈R8 andui ∈
R2 are respectively the As-U-Roll (AUR) and First Intermediate Roll
(FIR) actuator positions. The adoption of a set of linear gains carries
with it the assumption of the theorem of superposition i.e. the net
shape effect at the roll-gap is equal to the sum of the individual effects
due to AUR and FIR movements separately.
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TABLE I
PARAMETERS OFAUR AND FIR ACTUATOR

Actuator δ τc ki ∆ ki
Units volts Sec Gain mm Gain
AUR 0.25 0.05 8.0 0.15 1.3
FIR 0.25 0.1 3.13 0.25 0.7

B. Dynamic model

Both Actuators are represented by the block diagram 2, it contains
a significant nonlinearity which is an obstacle to the diagonalisation
of the system transfer function matrix, a linearisation technique must
be used.

Fig. 2. Block diagram of the actuator subsystem

The features of the actuator subsystem includes different parameters
for both AUR and FIR, rate-limited movements, backlash in drive
mechanisms, these parameters are given in Table I as follows:
The strip and shape meter dynamics vary with the rolling speed and

are given by:

gss(s) =
e−τ1s

(1+ τ2s)(1+ τ3s)
(1)

where:τ1 = D/v ; τ2 = D1/v
D : distance from roll-gap to shapemeter (2.91 m).
D1 : distance from roll-gap to coiler (5.32 m).
v : Rolling speed.
τ3 is the time constant of the shapemeter filter, which varies as fol-
lows: The strip dynamics relate to the transport delay between actua-

TABLE II
VARIATION OF THE SHAPEMETER TIME CONSTANT

Speed (m/s) 0→ 2 2→ 5 5→ 15
τ3 (Sec.) 1.43 0.74 0.3

tion and measurement and the principle of St. Venant (Bryant, 1973),
which states that the stress variation caused by end traction will de-
cay to zero exponentially due to the difference between input and exit
sides of the mill.

B.1- Actuator linearisation
A simple describing function analysis [7] is used to represent actuator
subsystem in Fig.2 as:

gact(s) =
1

1+
(

πx
4kcki

)
(1−δ2/x2)

1
2 s

(2)

where x is the signal entering the relay. A first-order compensator is
now placed in cascade with each actuator of the form:

C(s) =
1+ τs
1+ τes

(3)

with τ is evaluated as the time constant in 2 andτe chosen by the
designer, subject to limitations on the max. rate of change of the
actuator positions. A value ofτe = 2 was found to be appropriate.

C. Complete mill model

Following linearisation of the actuators, the complete mill model
may now be stated as:

G(s) = g(s) [Ga Gi ] ∈R8×10 (4)

where:

g(s) =
e−τ1s

(1+ τ2s)(1+ τ3s)(1+ τes)
=

γ(s)
σ(s)

(5)

Features of the mill model which present a challenge to the control
engineer include the following:
• The mill matrix,Gm = [Ga Gi ], suffers from rank deficiency,

there being only four reasonably large singular values.

• The mill matrix,Gm, varies with each schedule and pass, as the
mill set-up and strip parameters change.

• The dynamic section of the system, represented byg(s) varies
with mill speed.

• The complete system, including the FIRs, is nonsquare, prevent-
ing an attempt at associating particular inputs and outputs. How-
ever, with the AUR system alone, such an association is possible
by relating actuators and measurements in the same region of the
strip.

IV. PREDICTIVE FUNCTIONAL CONTROL FORMULATION

All MPC strategies use the same basic approachi.e., prediction of
the future plant outputs, and calculation of the manipulated variable
for an optimal control [2],[9]. Most MPC strategies are based on the
following principles [5]:
• Use of an internal model: its formulation is not restricted to a

particular form, and the internal model can be linear, nonlinear,
state space form, transfer function form, first principles, black-
box etc. In PFC, only independent models where the model
output is computed only with the present and past inputs of the
process models are used.

• Specification of a reference trajectory: From the measured
output value of the plant, a future desired trajectory is defined.
We do not aim at the set point, whatever constant or time vary-
ing, but at a trajectory leading to the set point in a speciic way.
Usually for PFC, the reference trajectory is an exponential.

• Determination of the control law: The control law is derived
from the minimisation of the error between the predicted output
and the reference with, in PFC, the projection of the Manipu-
lated Variable (MV) on a basis of functions [3]. It is claimed in
[3], that it is more efficient to structure the manipulated variable
that way as: on one hand, we limit the number of unknown pa-
rametersNb by projecting the future manipulated variable onto a
base of functionsUB j of smaller dimension than the prediction
horizonH. On the other hand, the discontinuity, and the control
frequency range, are limited, by limiting the dimension of the
basis.
The future command is then of the form:

u(k+ i) =
Nb

∑
j=1

u j (k)UB j (i) (6)

where theUB j are the basis functions.
Every input baseUB j implies an output basisSBj knowna pri-
ori for a given model. For example if we take a polynomial base,
the first three basis functions are shown in Figure 6. The con-
cept of projecting the MV onto a functional basis can be found
in [3][4] and is given the name PredictiveFunctional Control
(PFC). Usually a zero order base function (UB0), representing a
step MV change to find at each sample time, is used.

Therefore based on the above principles, the PFC algorithm may be
of several levels of complexity depending on the order and form of
the internal model, the order of the basis function used to decompose
the MV and the reference trajectory.

A. First order PFC
If the system can be modeled by a first order plus pure time delay,

then the following steps in the development of the control law are
taken.

A.1- Model formulation
A typical first order transfer function equation (7) in order to imple-
ment a basic first order PFC is used.

yM(s) =
KM

1+ τMs
u(s) (7)
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Note that the time delay is not considered in the internal model for-
mulation and in this caseKM is equal to one. The discrete time for-
mulation of the model zero-order hold equivalent, is then obtained in
(8)

yM(k) = αyM(k−1)+KM(1−α)u(k−1) (8)

whereα = e(− Ts
τM

). If the manipulated variable is structured as a step
basis function:

yL(k+H) = αHyM(k) (9)

yF (k+H) = KM(1−αH)u(k) (10)

Where,yL andyF are, respectively, the free (auto regressive) and the
forced response ofyM .

A.2- Reference trajectory formulation
If yR is the expression of the reference trajectory, then at the coinci-
dence pointH:

C(k+H)−yR(k+H) = λH(C(k)−yP(k)) (11)

with λ = e(− TS
TR

), where: TS is the sampling period andTR is the
Closed Loop Response Time (CLRT) to be specified.
thus:

yR(k+H) = C(k)−λH(C(k)−yP(k)) (12)

A.3- Predicted process output
The predicted process output is given by the model response, plus a
term given the error between the same model output and the process
output:

ŷP(k+H) = yM(k+H)+(yP(k)−yM(k)) (13)

A.4- Computation of the control law
At the coincidence pointH:

yR(k+H) = ŷP(k+H) (14)

Using equations (9), (10), (12) and (13) we obtain:

C(k)−λH(C(k)−yP(k))−yP(k)

= yM(k+H)−yM(k) (15)

ReplacingyM(k+H) by its equivalent in equations (9) and (10) we
obtain:

C(k)(1−λH)−yP(k)(1−λH)+yM(k)(1−αH)

= KM(1−αH)u(k) (16)

Solving foru(k), the final result is the control law given in (17).

u(k) =
(C(k)−yP(k))(1−λH)

KM(1−αH)
+

yM(k)
KM

(17)

Note that any measured disturbance may be compensated in a feed-
forward manner from equation (17).

B. Higher order PFC

For higher order system representations, a simplified PFC may be
given in [4], and developed in what follows:

B.1- Model formulation
If we consider a given model, of a specific process, given on the
following Auto-Regressive with Exogenous inputs form:

yM(z) =
b0 +b1z−1 +b2z−2 + · · ·+bmz−m

1+a1z−1 +a2z−2 + · · ·+anz−n u(z)

+
c0 +c1z−1 +c2z−2 + · · ·+cqz−m

1+a1z−1 +a2z−2 + · · ·+anz−n v(z) (18)

leading to the following difference equation:

yM(k) =−
n

∑
i=1

aiyM(k− i)+
m

∑
i=0

biu(k− i)

+
q

∑
i=0

civ(k− i) (19)

whereu is the MV andv is the input disturbance. Any complex
poles will be induced in the values of the denominator valuesan.

The model response, excluding the input disturbancev(k) may be
decomposed into two distinctive parts: a free (autoregressive) and a
forced responses.
The free (autoregressive) response of the system is given byyA,

whenu(k) = v(k) = 0, as:

yA(k) =−
n

∑
i=1

aiyA(k− i) (20)

The future free response of a linear system, atk+ 1, can also be
given using the futuren elementary outputsy1(k+ 1), y2(k+ 1) to
yn(k+1) as:

yA(k+1) = y1(k+1)yM(k)+y2(k+1)yM(k−1)

+ · · ·+yN(k+1)yM(k−N+1) (21)

whereyi(k+ 1) are obtained from equation (19) setting all initial
conditions to zero except one set to unity successively, as:

y1(k+1) =−a1y1(k), y1(k) = 1
y2(k+1) =−a10−a2y2(k−1), y2(k−1) = 1
...

...
...

...
...

...
...

...
yn(k+1) =−a10−a20−·· ·−anyN(k−n+1), yn(k−n+1) = 1

In practice, we require to iterate the elementary outputsyi(k+H) n
times, starting at timek = 1. This is done only once at the start of
the real time calculations of the MV, with all initial conditions null
except one until reaching the coincidence pointH, thus obtaining a
set of valuesyi(k+h). These values are stored in a memory and used
to obtain the free response, equation (22) at the coincidence pointH.

yA(k+H) = y1(k+H)yM(k)+y2(k+H)yM(k−1)

+ · · ·+yn(k+H)y(k−n+1) (22)

The calculation of the elementary outputs, are comparable to the
calculation of the prediction model parameters in Generalized Pre-
dictive Control (GPC) [1]. The difference lies in the nature of the
internal model formulation, an independent auto regressive one for
PFC. The elementary outputs obtained, are of a vector form, due to
the use of a single coincidence pointH. If a coincidence horizon is
considered, the elementary outputs will form a matrix as in GPC.
Note that the formulation of the free response, as in equation (21), is

only possible when using independent models as all future and past
value ofy(k) are known, a unique attribute of the independent model
formulation [8].
The forced response is calculated going from null initial conditions

and applying a step input, and is given by:

YF (k+H) =
m

∑
i=0

biu(k− i +H) (23)

B.2- Computation of the control law
At the coincidence pointH:

yR(k+H) = ŷP(k+H) (24)

Using equations (22), (23), (12) and (13) we obtain:
C(k)−λH(C(k)−yP(k))−yP(k)

= yM(k+H)−yM(k) (25)

ReplacingyM(k+H) by its equivalent in equations (22) and (23) we
obtain the higher order PFC following control law.

u(k) =
(C(k)−yP(k))(1−λH)+yM(k)

K(1−∑n
i=1 pi)

−∑n
i=1 piyM(k− i)

K(1−∑n
i=1 pi)

(26)

wherep1 = y1(k+H), p2 = y2(k+H), · · · pN = yn(k+H) andK
is the overall gain of the system.
In order to compensate the effect of a measured disturbancev(k), a

solution is to eliminate its effect in a feedforward manner as shown
in equation (27).

u(k) =
(C(k)−yP(k))(1−λH)+yM(k)

K(1−∑n
i=1 pi)

−∑n
i=1 piyM(k− i)

K(1−∑n
i=1 pi)

− ∑q
i=0civ(k− i)

Kd(1−∑n
i=1 pi)

(27)
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whereKd is the disturbance overall gain.
If the internal model is of first order, ı.e.,n=1, then the control law

equation (27) becomes the control obtained for a first order internal
model equation (17).
Some guidance in the determination of the co-incidence horizon can

be provided as:
• Complex poles:ChooseH to be, at least, one period of the open-

loop complex response, and

• Non-minimum phase: Longer than the inverse ‘dip’ in the step
response.

C. Case of a process with a pure time delay

In the linear case, a process with a pure time delay can be expressed
in terms of a delay-free part, plus a delay added at the output, as
in Fig. 3. The valueyPdelay at time k is measured, but notyP. In
order to take into account the delay in a control law formulation, prior
knowledge of the delay valued is needed.yP can be estimated as:

yP(k) = yPdelay(k)+yM(k)−yM(k−d) (28)

Fig. 3. Process with time delay

and replaced in equations (17), (27) and (26).

D. Tuning in PFC

According to the three principles of PFC (Section IV.), tuning is a
function of the order of the basis constructing the MV, the reference
trajectory, the control horizon and the CLRT value.
A general idea of the influence of PFC parameters, on precision,

transient response and robustness are graded between 0 (indicating
minimum influence) and 100 (indicating maximum influence), is
given in Table III.

TABLE III
EFFECT OFPFCPARAMETERS ON RESPONSE AND ROBUSTNESS:

TUNING IN PFC

SS Transient Robus-
Resp. Resp. tness

Basis Function 100 0 0
Reference Trajectory 0 100 50
Coincidence horizon 0 50 100

In most cases, an exponential reference trajectory is chosen along
with a single coincidence horizon point (H = 1) and a zero order
basis function [3]i.e. a step change to find. Considering the known
Open Loop Response Time of the system (OLRT), one can choose the
CLRT value given by the ratio OLRT/CLRT. This ratio then becomes
the major tuning parameter shaping the system output and MV, dic-
tating how much overshoot occurs and ensuring stability, on the con-
dition that the internal model is accurate enough. For slow processes,
e.g.,heat exchange systems, a ratio of 4 or 5 is found most suitable,
and ensures a stable PFC [4].

V. CONTROLLER IMPLEMENTATION AND RESULTS

Results of3rd order PFC controller implementation for automatic
shape control will be presented , only AUR actuators are used here
as a shape control device. The basis for not including (initially, at
least) the FIRs in the automatic control scheme accords with rolling
practice, since the FIRs are generally preset for a particular pass, with
only the AURs (as the name suggests) moved while rolling is taking
place[6]. The model is decoupled by using an inverse ofGa ∈R8×8

as a precompensator, the resulting complete mill model contains 8
independent SISO tranfer functionsg(s) with a time delay fixed to
τ1 = 0.728sec..
The performance of the implemented controller could be seen in 4,
each of the 8 segements is controlled separately and reaches the set-
point value quickly (in 10 sec.), to illustrate the ability of controller

to overcome disturbances, a step change of the incoming shape pro-
file simulating a weld in the strip is applied att = 30sec., the main
feature of this controller is the non agressive control signals.
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VI. B ENCHMARK PID DESIGN

In this section a MIMO PID controller will be designed and tuned,
as best as we could, to regulate the shape profile. The PID controller
transfer function is usually given by:

C(s) = Kp +
Ki

s
+Kds (29)

where Kp, Ki and Kd are, respectively, the proportional, integral and
derivative gains. A digital version of the classical PID is used when
the plant is operated by any digital/computer based controller, and
can be given by the following set of equations, assuming numerical
integration derivative approximations obtained using the backward
difference:

e(k) = yre f (k)−y(k) (30)

s(k) = s(k−1)+e(k) (31)
And the digital PID control law is given by:

u(k) = Kp{e(k)+Kis(k)+Kd [e(k)−e(k−1)]} (32)
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where :Ki = Ts
Ti

Kd = Td
Ts

, andTs is the sampling time.
Since PID has not the power of prediction, performances reached
with this controller are not good as ones obtained with the PFC tech-
nique (see Fig. 6) . Despite that, and the presence of time delay, PID
controller can reject disturbances in the incoming shape profile, but
with a slower dynamic.
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TABLE IV
COMPARISON BETWEEN CONTROL PERFORMANCES

Response Overshoot Mean Square
time (Sec.) (%) Errors (N/mm2)

PFC 13.1 0 17.17
PID 21 1.85 26.92

VII. C ONCLUSION

From the results obtained in section V. and VI., summarized in table
VI., it is clear that PFC overcome the performances of PID controller
not only takes into account the pure time delay of the system, but
giving the power of prediction reduces the aggressive nature of the

control action, resulting in a smoother and quicker response with a
good overcoming of shape fluctuations in the rolled strip by using an
exact model of the plant, the robusteness to the model-plant mismath
was therefore increased which ensures a best control performances.
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